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Developing a Spatial-Temporal Method
for the Geographic Investigation of

Shoeprint Evidence

ABSTRACT: This article examines the potential of a spatial-temporal method for analysis of forensic shoeprint data. The large volume of shoe-
print evidence recovered at crime scenes results in varied success in matching a print to a known shoe type and subsequently linking sets of matched
prints to suspected offenders. Unlike DNA and fingerprint data, a major challenge is to reduce the uncertainty in linking sets of matched shoeprints
to a suspected serial offender. Shoeprint data for 2004 were imported from the Greater London Metropolitan Area Bigfoot database into a geographic
information system, and a spatial-temporal algorithm developed for this project. The results show that by using distance and time constraints interac-
tively, the number of candidate shoeprints that can implicate one or few suspects can be substantially reduced. It concludes that the use of space-time
and other ancillary information within a geographic information system can be quite helpful for forensic investigation.
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The use of geographic information systems (GIS) in the criminal
justice field has its roots in an earlier generation of police crime
mapping (1,2). Functions such as hot spot analysis, time-series
mapping, and pattern detection have become an integral part of
crime pattern analysis (3-5). Integration of such spatial analysis
tools within GIS have resulted in new opportunities for analysis of
forensic evidence. While there is a clear advantage to using GIS
for crime mapping, GIS applications for forensic and crime scene
investigation have rarely been explored. Although fingerprints are
the most prevalent impression evidence, shoeprints, tool marks, and
tire tracks are routinely collected at crime scenes. While fingerprint
evidence provides a greater than 95% probability of linking a sus-
pect to a crime scene, shoeprints and other impressions have a
much lower probability of positive association between evidence
and offender. Improved information can enhance the level of confi-
dence and lead to either a positive identification or an exoneration
of a suspect (6). In this article, we demonstrate how GIS analysis
can enhance the matching of shoeprint evidence.

Shoeprint evidence is sometimes overlooked, even though crimi-
nals presumably leave impressions routinely when entering and
exiting crime scenes. A lack of focus on the search for, collection,
and preservation of shoeprint evidence lowers the recovery rates of
shoeprint evidence relative to fingerprints. According to a 2004
London Metropolitan Police report, the evidence recovery rate for
shoeprints was 12.4% as opposed to 19% for fingerprints. The
report stated that, with greater attention, the recovery rate of shoe-
prints can be raised to 30% for burglaries (7). In contrast to finger-
prints, shoeprints are much less likely to be considered
unique. Consequently, even though criminals make little attempt
to mask their footwear, investigators may overlook shoeprint
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evidence at crime scenes (8). The previous lack of attention to
shoeprints in criminal investigations presents an opportunity to
enhance the value of shoeprint evidence and its use in the appre-
hension of criminals (9).

Identical or similar shoeprints are frequent and without sifting
out unrelated shoeprints it is difficult to establish connections
between a shoeprint and a suspect. Forensic principles often look
for a match between evidence and suspect beyond a reasonable
doubt and most shoeprint evidence does not meet such a high stan-
dard. For example, if two matched size 10 Nike prints are found at
two different crime scenes, it may be inferred that the two were
linked, but it cannot be certain that the crimes were committed by
the same suspect. Crime mapping, which draws spatial statistical
inference from spatial patterns, can provide some clues for investi-
gating forensic evidence patterns. For example, most crimes are
associated with a criminal’s activity space—the area he or she is
most familiar with (10). If a neighborhood appears as a crime hot
spot on a map, it may be inferred that repeat offenders may live or
work in close proximity to that location. Local residents can use
their mental maps and this hot spot information to avoid certain
areas, while police can identify hot spots with GIS and allocate
more resources to crime hot spots (3,11). Forensic investigators are
also likely to benefit from crime mapping because inferential infor-
mation, such as the distance and time of crimes for sets of matched
shoeprints, can be readily displayed and related to others.

Crime mapping and spatial inference can contribute to forensic
shoeprint matching in four ways. First, clusters exist at the street,
neighborhood, and city scales and the relative importance of factors
that influence hot spots at the street scale differ from those that
influence hot spots at the neighborhood or city scale (11,12). The
bloody shoeprints found at the scene of the double murder of
Nicole Brown Simpson and Ronald Goldman, for example, were
deemed to be from a relatively rare Bruno Magli “Lorenzo” model
size 12 boot (13). Even in a city the size of Los Angeles it is likely
that few individuals would wear the same model and size of Bruno
Magli shoes, but if we enlarge the area to nationwide, we may find
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that scores of individuals owned a pair. In fact it was determined
that only 29 pairs of black, size 12, Lorenzo Bruno Magli shoes
had been sold in the U.S. (13). Secondly, crimes occur in different
time frames and one can exclude some evidence on the grounds of
time constraints. If two crime scenes are 10 miles apart it would be
impossible for the same person to be involved if they were known
to be committed only 5 min apart. Thirdly, crimes can be grouped
by frequency on the basis of location or certain types of individuals
(11). Because many crimes are committed by a repeat offender
who commits at least three offenses, geographically connected and
matched evidence can be useful for identifying related crime
scenes. Finally, shoeprint retrievals at crime scenes are often
enhanced and stored as images in a database that also includes
information on type of crime, mode of entry, date and time of sus-
pected crime occurrence, geographic coordinates of a crime scene,
etc. (14,15). This ancillary information can enhance the value of
the forensic evidence. Alexandre (7) lists three common uses for a
shoeprint database: (i) determine the brand and type of shoe that
left the impression at the crime scene; (ii) compare identified
impressions with suspects’ shoes; and (iii) demonstrate that a partic-
ular impounded shoe left the shoeprint at the scene. In this article,
we provide an additional way of utilizing shoeprints by using a
GIS for spatial inference of shoeprint clustering.

Data and Geospatial Issues for Shoeprint Investigation

A forensic shoeprint dataset was extracted from the Bigfoot data-
base maintained by the Forensic Analysis Unit of the Metropolitan
Police Service in London, England (16). The Bigfoot database con-
tains ¢. 10% of all crime sites in the Metropolitan district and since
1997, more than 10,000 shoeprints have been recorded per year.
When forensic evidence is collected it is usually photographed,
or gelled and then entered into an image database along with the geo-
graphic coordinates of the site. Criteria for matching shoeprints are
based on the same guidelines as fingerprints. In other words, a pair of
matched shoeprints should have identical brand name, model, size,

and degree of wear. If two shoeprints have an identical name-model-
size combination, but different wear, they are coded as being similar
to each other, but not identical. If a serial offender wore two types of
shoes, and both types are matched multiple times, the two types of
shoeprints are treated as worn by two “‘separate offenders.”

This study is based on data recorded for ¢. 100,000 burglaries in
2004. A total of 10,096 shoeprints were recovered for the year
2004. Of those, 9210 were assigned shoeprint codes, and 886 were
coded ‘“‘unknown,” which were excluded from the analysis. For
those with a known name and brand, the real shoeprint label was
changed to protect the confidentiality of the data. Figure 1 provides
a sample of 201 “MARKI175” shoeprints in the database from 33
London boroughs and it is inconceivable that all of them were left
by a single suspect. The challenge is how to group them so that
one suspect is likely to be associated with each group of shoeprints
that has an identical brand, model, size, and wear.

To perform spatial analysis on the massive shoeprint database,
we need to assess several geospatial issues for shoeprint data. The
first issue is that an area with a high concentration of crime does
not necessarily have a concomitantly high concentration of forensic
evidence. The amount of forensic evidence depends on how much
evidence remains at the crime scene and how much effort is made
to recover that evidence. Before analyzing a particular set of evi-
dence geographically, one should establish quality measures, such
as certain ground conditions that may be more likely to imprint
shoe marks than others. Shoeprint data quality may be assessed by
the number recovered, coded by brand names and model number.
This leads to the “recognizable impression rate,” the ratio of
clearly coded shoeprints to the total number of shoeprints in a geo-
graphic area. A high recognizable impression rate is associated with
high quality shoeprint evidence, which is related to shoeprint wear,
ground conditions, evidence preservation methods, and shoeprint
impression generating processes. A second measure is the “recov-
ery rate,” the ratio of the total number of shoeprint evidence
records and the total number of crimes in a geographic unit. If
recovery rates across boroughs are fairly evenly distributed, it

8 Miles

FIG. 1—MARK175 shoeprints distribution in London metropolitan area.
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implies that the collection was without operational and environmen-
tal constraints. The spatial distribution of prints can be considered
unbiased. In the preliminary assessment of data quality, we disag-
gregated the 10,096 shoeprints to the 33 metro-London boroughs
and divided them by burglary incidences from March 2004 to Feb-
ruary 2005 for each borough. We found a recovery rate of about
10% for each borough, and there is no spatial clustering of recov-
ery rates or bias toward a few boroughs.

The second issue is that shoeprint evidence can be classified
according to rarity. Many shoeprints with the same size and similar
patterns of wear will be found for a common brand and model. For
a forensic investigator, the problem is not about matching shoe-
prints for a rare brand and model, because they face much less
resistance to be admitted as evidence. When a large number of
matched shoeprints are presented, their admissibility as evidence
could be problematic. Hence, it becomes a challenge for a forensic
investigator to connect the matched prints for a common brand and
model from a relatively large number of crime scenes. Tradition-
ally, shoeprints were connected through a descriptive report, mostly
for rare brands, leaving a large number of matched shoeprints
underutilized (7,8). When these more common shoeprints are in a
GIS database, several methods can be used to enhance their usabil-
ity. For instance, the probability of similar impressions being from
the exact same shoes decreases with distance. Based on the concept
of journey-to-crime, a space-time constraint can be set out to
restrict the scope of matched evidence. If two matched shoeprints
are too far apart for a given distance-time constraint among 201
matched shoeprints in Fig. 1, then the two shoeprints should not
point to the same suspect, or one print should be excluded from a
focused analysis.

The third issue is how to communicate the results of spatial anal-
ysis of forensic evidence. A hot spot of multiple crime incidents
may be attributed to one or many suspects, but forensically and
geographically matched shoeprints may reasonably be linked to one
suspect. For a spatial analyst, it is a trivial matter to highlight a
unique shoeprint, even though each unique shoeprint may point to
a single suspect; neither is it a challenge to identify two matched
shoeprints. Spatial hot spot analysis becomes important when the
goal is to implicate one suspect’s involvement in several crime sites
on the basis of a number of matched shoeprints. The frequency dis-
tribution of the number of matched shoeprints found in the Greater
London area is shown in Fig. 2. Note that the unique shoeprint cat-
egory had more than 900 observations, so the value 1 was omitted
from the x-axis. One hundred and fifty-eight unique shoeprint codes
had two matched shoeprints. Likewise, 91 unique shoeprint codes
had just three matched shoeprints. At the other extreme, eight shoe-
print codes having at least 200 “identical” shoeprints were found
in the Greater London area. These high frequencies suggest that a
large number of matched shoeprints point with a low degree of
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FIG. 2—The distribution of the number of matched shoeprints in London:
2004.

certainty to one or few suspects, and thus may not yield any useful
information.

Unlike a crime hot spot, which does not distinguish suspects, a
hot spot for shoeprints should point to a single suspect or few sus-
pects. For this reason, the emphasis of forensic evidence examina-
tion is not to draw statistical inference for a crime hot spot, but to
reduce information from a large number of matched shoeprints to a
relatively manageable set. Based on the somewhat limited human
capacity for processing information simultaneously (17), it would
be hard to infer from a set of matched shoeprints corresponding to
more than seven (plus or minus two) crime incidents. Our inter-
views with forensic investigators suggest that a set of matched
shoeprints with 10 or fewer occurrences may allow an investigator
to explore the options, but more than 10 presents too many alterna-
tives. Reducing the number of possible alternatives can be achieved
through further analysis. For example, shoeprints coded MARK21
have a total of eight observations. Even though eight of 10,096
observations suggest that the probability of the print being made by
the same offender is high, we can further examine them geographi-
cally (Fig. 3). There are four marks within 2 miles of central Lon-
don, and the likelihood of these marks being left by the same
offender was quite high, because the evidence was recovered from
crime scenes within 12 days of each other and the type of offense
in each case was residential burglary. Furthermore, information
about the mode of operation (MO) is also useful. In this case, the
description of the crime is similar, e.g., “suspects kicked in front
door of flat and entered premises and searched through occupier’s
property.” This example suggests that by analyzing the spatial
pattern and using ancillary information, it is possible to reduce the
number of matched shoeprints for further investigation to 10 or
fewer.

To summarize, the evaluation of geographic aspects of shoeprint
evidence involves assessing the quality of the spatial sample, reduc-
ing the sample size from a large set to smaller and manageable
sets, and finally the investigation of subsets linking several crimes
to a suspect. From the perspective of this paper, the second issue is
most critical: reducing the number of matched shoeprints from a
large set. In the following section, we present a method of reducing
a large set of matched shoeprints to smaller sets.

Space-Time Algorithm for Shoeprint Subsetting

The journey-to-crime literature suggests that criminals tend to
commit crime in geographic locales that are familiar to them (12).
Leitner et al. (18) profiled burglars’ journey-to-crime based on Lon-
don data and found that the distance from the safe haven ranged
from <1 mile to >2 miles. Two likely crime site locales are neigh-
borhoods near the offender’s residential and employment locations.
For instance, we might assume that a burglar might only burglarize
a house within one mile of his residential location. However, if he
burglarized twice, one toward the east, and one toward the west of
his residential location, we would need a threshold distance of two
miles to cover the two matched shoe marker incidents. In spatial
journey-to-crime profiling, suspect location is a reference point to a
crime location in radius; in spatial forensic profiling, an evidence
location acts as a reference point to another evidence location.

The creation of a cluster of matched shoeprints is a function of
space and time. If we set 1 mile as the active area of a suspect,
and two matched shoeprints within 1 or 2 h, we can reasonably
speculate that the two were from the same suspect. As time
increases, another suspect with the same shoeprint may come to
the scene. For this reason, the same two matched shoeprints a few
months apart, may or may not suggest the same suspect. In order
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FIG. 3—Central London MARK21 distribution by time.

to infer from one shoeprint evidence location to another, we devel-
oped a self-exclusion algorithm by using a space buffer and a time
buffer to eliminate points.

The algorithm works this way (Fig. 4): (i) both distance and
time thresholds are specified. For convenience, let’s say we spec-
ify distance as 2 miles, and time as 10 days; (ii) a starting point
is randomly selected from all the matched shoeprints for a par-
ticular shoeprint code. If the selected point is within the speci-
fied distance from another shoeprint site, the point is retained;
otherwise, it is dropped from consideration; and (iii) the retained
point is checked if it is within the specified time duration to the
closed point: if yes, then the point is retained, otherwise it is
dropped from consideration. This process is repeated for the next
closest point and so on until all prints have been exhausted. The
algorithm acts to exclude one point at a time; in order for a
point to remain in the set, it has to satisfy both the distance
and time criteria. In the enlarged map of Fig. 3 for a central
London area, we found four matched shoeprints in four sites, all
within 2 miles. Three shoeprints were also recovered within
10 days. If we set the time constraint to within 1 week, then the
fourth point will not be included in the reduced set, even
though all sites meet the distance criterion. The eventual set of
points generated by this algorithm differs in approach from the
statistical approach of spatial cluster analysis, where a hot spot
can be identified by testing a most likely cluster regardless its
size, or by testing for a clustered area against spatial
randomness.

Based on previous research and our own exploratory data analy-
sis (18,19), distance constraints of 1, 3, and 5 miles, and time con-
straints of 15, 30, and 45 days were chosen to assess the
effectiveness of the algorithm. This process was repeated nine
times to yield the results in Table 1. As expected, the greatest
reduction resulted from the smallest time-space constraint of
15 days and 1 mile from the original of 9210 to 2003, a 78.3%
reduction. At the other extreme, the widest space-time constraint
yielded the largest number of observations with only 28.6% sample
reduction. Upon further reviewing the results, it was concluded that

Data with same
shoe mark

‘ Specify time/distance ‘

‘ Pick up a point ‘
Move to
next point N

as point within
time/distance?

FIG. 4—Space-time self-exclusion algorithm.

the 45-day 5-mile time-space constraint was the least useful due to
its tendency to produce points that did not generally cluster
together. From our calculations of the average nearest distance
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TABLE 1—Sample reduction from the space-time algorithm.

Days 1 mile 3 miles 5 miles

45 5427 (41.1) 6214 (32.2) 6578 (28.6)
30 4373 (52.5) 5122 (44.4) 5693 (38.2)
15 2003 (78.3) 2621 (71.5) 3077 (66.6)

% reduction from the original sample of 9210 shoeprints given in
parentheses.

among all matched shoeprints, we found that most neighboring
shoeprints lie within a mile radius.

To assess how useful the resultant pattern might be, we used the
MARKI175 print shown in Fig. 1 as an example. The triangles rep-
resent the total of 201 matched shoeprints as the background, and
the dots represent the remaining 38 shoeprints based on the 1-mile
and 15-day criteria (Fig. 5). Cross symbols represent 125 shoeprints
based on 3-mile and 15-day criteria. We now turn attention to the
38 shoeprints and their distribution pattern. There are apparently
two large clusters and three or four small clusters that can be sepa-
rately turned over to crime analysts for further investigation. All
the clusters have manageable numbers of prints less than seven.

After reviewing the observations, three geographic patterns
emerged.

1 Co-location—a set of matched shoeprints retrieved from the
same crime scene (see the insert). This type of cluster is almost
certainly left behind by the same offender.

2 One set of matched shoeprints lies within a borough boundary.
The presence of a borough boundary may result in the misinter-
pretation of possible connection among shoeprints. On the other
hand, if the borough represents a coherent socioeconomic entity,
we can use it as a reference to link to other demographic,
social, and economic information in the database.

3 When a set of matched shoeprints scatters across boroughs with-
out a clear spatial pattern, other ancillary information and statis-
tical tools are needed to group and link it to potential suspects.

In the following, we demonstrate how to use the algorithm and
ancillary data to enhance information certainty.

E46 marks provide a highly concentrated hot spot within a bor-
ough. There were 23 matched shoeprints and four similar to E46
(not shown). Applying the algorithm with a 15-day and 1-mile
criteria yielded 13 sites in the London borough of Brent. Using
5 miles and 45 days, five more shoeprints were added. We use the
1-mile constraint because the probability that the marks are left
behind by multiple offenders is low and we want to understand the
suspect’s activity space. We find that the offense pattern is very con-
sistent, 12 of the 13 marks are residential burglaries; nine of the 13
of the crimes were committed in the early or late evening hours. In
addition, the MO description of this particular set of matched shoe-
prints has the term “window” appear in 10 of the 13 and the terms
“rear” or “back’ in eight of the 13 descriptions, indicating a possible
consistent point of entry as a rear or back window. Based on these
criteria, it is concluded that the matched E46 shoeprints were proba-
bly left by the same offender, and one way to catch him/her is to
set surveillance in the area during the early morning and late
evening. Alternatively, to prevent him/her from committing further
burglaries, the authority should alert residents to have some deterrent
device, such as an alarm system for their rear windows.

Borough-specific hot spots can implicate a suspect’s living and
working activity spaces. For example, the code Rectangle refers to
a geometric pattern matched by 34 shoeprints (Fig. 6). While this
shoeprint is not matched as a specific type of shoe, it is matched to
a specific and generic design of imprint. We ran the algorithm
based on 15 days for 1, 3, 5 miles, and yielded 13, 27, and 31
marks, respectively. The resulting markers are concentrated mainly
in three boroughs; Haringey, Harrow, and Islington. The 3-mile
space constraint was selected for its manageability of clustering
potentials within the three boroughs. There are several possible
inferences based on the reduced set. One inference is that these
shoeprints are from one offender whose home is in one borough
and whose work place is in the other. Of the 27 total shoeprints
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FIG. 5—Shoeprint set reduction of MARKI175: distance = 1 or 3 miles and duration = 15 days.
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FIG. 6—Borough-specific pattern Reg: distance = 3 miles and duration = 15 days in box.

that remain from the 3-mile buffer, 23 are residential burglaries,
and 16 indicated forced entries by smashing windows or forcing
open windows or doors. In particular, a cluster of residential
burglaries exists in the borough of Harrow and seven of the 11
residential burglaries were committed during the workday
(7:30 aM—5:00 pm) and are tightly clustered, revealing some consis-
tency within that particular borough. A similar pattern exists for
Haringey borough with the smallest space constraint. The smaller
distance range suggests nonresidential, because industrial parks are
zoned in smaller areas. In fact, four out of the five points were
nonresidential burglaries in this borough and all four occurred in
the evening or early morning hours, as opposed to usual workday
hours. In addition, these four points are not very tightly clustered in
time. A lead can be reasonably pursued for one suspect in two
locations, one in the suspect’s residential location, and the other in
the suspect’s work location.

Conclusion

The current study explores ways to use a GIS to improve the
usefulness of forensic data for crime analysts. As forensic and
crime data are often related in a geographic context, we were able
to use some existing crime mapping analysis techniques, such as
journey to crime, residential and work location inferences, and
space-time constraints. Although the quality of forensic data is
assessed by a high confidence in matching, not all forensic data
achieve the desired quality level. DNA and fingerprint matches
often lead to one-to-one linkage of a crime scene to a suspect with
100% certainty, but forensic evidence from industrial products,
such as shoe marks and tool marks, can often have multiple
matches, and how to reduce a set of evidence with multiple
matches poses a challenge for crime analysts. We demonstrate that
the use of space-time information within a geographic information
system in these situations can be quite helpful.

Shoe impressions from burglaries in the Greater London area
were used to demonstrate the space-time algorithm that reduces a

relatively large set of matched shoe impressions to manageable
subsets based on distance and time constraints. A range of diame-
ters, such as 1, 3, and even 5 miles represented the residential
active space for a suspect. Although a habitual burglar can commit
a crime anytime during a year, from the point of apprehending the
suspect, the most useful information is derived from activities
within a short duration, and we found that 15 days in combination
with a distance threshold of 1 or 3 miles often yield the most man-
ageable subsets. In general, large numbers of common shoeprints
(e.g., more than 200) require a shorter distance to break them to
manageable subsets of 7-10 clustered points. For a small set of
matched shoeprints (e.g., 50 or fewer), reducing a distance con-
straint from 3 to 1 mile usually has little effect on the elimination
of points from the original set. Although these results are context
dependent—Greater London in 2004—they serve as a basis to gen-
erate some empirical tables for useful space time constraints. In this
way, crime analysts from different places can refer to different
space-time criteria for disentangling large geo-spatial forensic evi-
dence databases.

Although it is not an emphasis of the current study, we evaluated
the data quality of the shoeprint dataset. In so doing, we needed
to distinguish conceptual differences of crime rate from forensic
evidence recovery rate in general, and recognizable impression rate
from impression evidence in particular. The spatial analysis of the
current study is based on the assumption that forensic evidence is
evenly recovered over geographic space, and all impression evi-
dence is treated with the same quality standard. Although we do
not observe general violations of these assumptions, the results
could be biased if evidence from one area is more often recovered
than evidence from another area. We also point out conceptual dif-
ferences of a crime hot spot versus a forensic evidence hot spot in
reference to a repeat offender. In addition, ancillary information
within an administrative boundary should be used with caution.
The results could be interpreted differently if borough boundaries
are defined arbitrarily without sociodemographic and zoning impli-
cations. Future studies should evaluate how a crime analysis may
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operate based on different assumptions, such as geographic dispar-
ity in evidence recoveries.

Finally, the current study demonstrates only one type of GIS
analysis, space-time, for one type of forensic evidence, shoeprints.
There are many types of GIS analysis, such as the geographic
accuracy of evidence collection, registration, and referencing that
can be readily used or integrated with crime scene sketching or
computer-aided design (CAD) technologies. This study provides
the basis for an analytical approach that can be used for spatial
analysis of other forensic evidence.
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